
Graphical User Interfaces



Tkinter
Why Tkinter?

● Comes with Python
● Cross platform
● Mature and stable (over 30 yrs old!)
● Sufficient for small, lightweight GUIs
● Offers a glimpse at core principles of a GUIs



Tkinter
Why Not Tkinter?

● Lacks modern widgets 
(components)

● Does not have a GUI designer
● Slower than other options
● Does not support accessibility

○ Some third party support (Tka11y) but 
not cross-platform (no Windows/OSX) Python GUI designer in QT



Tkinter
Why accessibility?

● Any program designed to be used 
by the population at large should be 
accessible.

● In GUI design, accessibility means 
that the accessibility layer of the OS 
can interpret and act upon GUI 
widgets without user intervention.



Tkinter
Why accessibility?

● All major software producers have 
accessibility initiatives and look for 
developers with accessibility 
experience.

● But also, many software producers 
do not. THEY NEED YOUR HELP.



Tkinter
What is accessibility?

● Ensuring all people, regardless of 
ability, can access and interact with 
graphical user interfaces.

● Includes: visual impairments, 
auditory impairments, cognitive and 
motor impairments.



Tkinter
How are GUI’s made accessible?

● Support keyboard only
● Consistent keyboard conventions 

(e.g., ctrl+c == copy to clipboard)
● Described control and actions
● Avoid communicating through 

images. If necessary, provide 
alternative text descriptions. Python GUI designer in QT



Designing a GUI



File

Ready Save

New File
Open File

Post



File

Ready Save

Post 1 @lastfmPost 1
Post 2
Post 3

>

New File
Open File

Post



Geometry Managers





Geometry Manager
● A set of algorithms that determine how to 

render widgets in a GUI from configuration 
parameters.

● Config parameters are set 
programmatically, by YOU.

● Different types of algorithms = different 
types of geometry managers

Tkinter Geometry Managers:

● Pack
● Place
● Grid



Geometry Manager: Pack
● Determines a ‘parcel’ or rectangular space 

large enough to hold the specified widgets 
(e.g., button, textbox, checkbox)

● Responsive, works well across platforms
● By default will center the widget(s)
● But! Widgets can be assigned rules to 

further control where they are placed in 
the parcel:

○ Fill - specify which direction (horizontal, 
vertical, both)

○ Side - specify which side (top, bottom, left, 
right)

○ Expand - 
● Packing order is important!
● Let’s play…

File

Ready Save

Post 1 @lastfmPost 1
Post 2
Post 3

>
Post



Geometry Manager: Place
● Easy to conceptualize, difficult to get right 

for cross-platform, varied resolutions. Not 
responsive.

● Widgets are placed within a frame 
according to specific x,y coordinates

● Good for windows that will always be fixed 
in dimension:

○ Pop-up dialog
○ Simple input (a textbox and button)

btn = tk.Button(...)

btn.place(x=10,y=100)



Geometry Manager: Grid
● Benefits of both pack and place. 

Responsive, easier to understand and 
design.

● Widgets are placed within a grid of rows 
and columns

● Rows and columns can be customized 
with attributes (borders, padding, min/max 
size, ‘stickiness’)

● A bit more complex, programmatically, but 
probably best option once understood.

btn = tk.Button(...)

btn.grid(row=0, column=3, 

sticky="nsew")



Geometry Managers
You don’t have to pick just one! Pick the one that is 

right for your layout. Mix and match as needed.



The Event Loop



The Event Loop
● In graphical interface 

programming, screen updates are 
processed in an event loop.

● As each graphical element (widget) 
is acted upon, it is put into an 
event queue, and must wait its turn 
to be executed.



The Event Loop
● Once all events in the queue are 

processed, the event loop initiates 
a redraw or updates the screen.

● These events often go unnoticed 
because they occur so quickly.

● Until some other process takes a 
long time.



The Event Loop
● Demo 1



The Event Loop
● Wait...What’s a thread!?

○ Threads enable multiple processes to 
run at the same time.

○ Get complicated quickly.
○ Require special coding to share 

information
○ Way beyond the scope of ICS 32!

New
Task

Worker 
Process
Event
Lifecycle

Finished
Task

Ready

Busy

Done



The Event Loop
● A simple fix, suitable for ICS 32.

○ update() and update_idletasks()
■ Start a new event loop, nested 

within the existing one.
■ Forces event processing by 

starting a new event loop.
■ Update_idletasks is the same as 

update, but only processes 
screen redrawing, not other 
events in queue.

○ USE SPARINGLY! Nested event loops 
can quickly grow out of control and 
render unexpected results in your 
program.

.update()

.update()



The Event Loop
● Demo 2




